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Introduction

This final eport summarizes one aspect of the research sponsored by
the National Aeronautics and Space Administration under NASA Grant
NGR-33-013-077 for the period January 22, 1973 through January 21, 1974.
The research supported by this grant encompasses the problems con-
cerned with the Digital Processing of Signals.

Part I of this report discusses digital multiplication of two waveforms
using delta modulation. Delta modulation is an A/D conversion technique
gaining widespread use. However, when a digital signal is to be processed
it is first converted to a PCM signal and then processed using one's com-
plement or two's complement arithmetic. We are currently studying DM-PCM
and PCM~DM converters in which the DM employed is adaptive. Our results
of this study should be completed by 1975.

It is important to note that the DM signal need not be converted to PCM
prior to processing. The DM encoded signal can be processed digitally,
directly in the DM format. The process of multiplication of two waveforms,
each DM encoded, is discussed in this section. It is shown that while
conventional multiplication of two N bit words requires N2 complexity,
multiplication using DM requires complexity which increases linearly
with N. .

Bounds on the SNR resulting from this multiplication -are.determined and
compared with the SNR obtained using standard multiplication techniques.

A New Area of PLL research is discussed in Part II of this report. The
PLL is one of the most often used systems in a communications system.

It consists of a Phase Detector, Voltage Controlled Oscillator and a linear
loop filter. The design of this filter is extremely important as the extra
degrees of freedom given to the system by this filter results in the possi-

bility of threshold extension increased pull-in range, decreased pull=in_

time, etc.

We are currently investigating PLL operation when the linear filter is
replaced by a nonlinear digital processor. In particular we are consider-
ing a processor which "looks" at the gign of the past phase errors and
corrects the VCO accordingly. The algorithm employed is similar to the
one used in the DM and we are able to show an equivalence between the

PLL and the DM.
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The research supported by this grant and its "sister" grant
NGR 33-013-063 has resulted in 1 PhD Dissertation (Part II) and the

publication and presentation of severa. papers (Part III).

Participating in this program were:
Drs. J. Greco, 1. Paz, W. Roseaberg and D. L. Schilling,

and

Megsrs. J. LoCicero, D. Ucci, M. Steckman and N. Scheinberg.

I. Digital Processing of Signals: Digital Multiplication Using Delta Modulation

BAbstract

We shall demonstrate that it is possible to multiply two signals that are
digitally encoded with a Delta Modulator (DM) by operating on the incoming
bit streams and employing only the standard digital manipulations. The
resulting product error is investigated using signal statistics and for the
case of constant inputs. Signal-to-quantization noise ratios (SNR) are

obtained for constant inputs ‘and various types of DM's.

1) Traditional Digital Multiplication

~ Generally digital multiplication is treated as a static operation; that is,
two n-bit PCM words are either fed into a combinatoric circuit or into a
preset read only memory (ROM) or a preset random access memory (RAM).
The result is a 2 n-bit PCM word which is the product. If we wish to multi-
ply two signals, both bandlimited to f , then we must perform this static
operation on the PCM words from each 51gnal every i}:l seconds. This is
because the product will be bandlimited to 2 f as we know from the
convolution « multiplication theorem of Fourler analysis.

The major objection to PCM multiplication is first, that it starts off fresh
at each product operation and second, because of the combinatorics involved,
the cofnplexity involved and therefore the cost increases as the square of the
numbers of bits that are used. We shall see that the DM multiplier not only
operates dynamically with each product output depending on past inputs but

its complexity varies linearly with the number of bits utlilized.
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2) Digital Multiplication With Linear DM

A linear DM, whose block diagram is shown in Figure 1, produces a

signal estimate

t-1
N 0 .
X (1) Skz=0ex() (1)

where s = DM step size.
Here we have assumed that x(t) is bandlimited to fm and is sampled for
DM encoding atf == f_.
‘ s m
Consider a second signal, y(t), which is also bandlimited to fm and

which is also passed thru a linear DM. The estimate of y(t) is
vy (@) =s7: e (1), (2)

We shall now form the product of the estimates and use this as an

¢éstimate of the product, that is,
e ST ,
xy (1) =x @) y(i). (3

We can also write

, i-2
xi-1)=s n e, (k) : (4)
k=0
and
X i-2
y(1—1)=sj§0 e (). (3)

Combining equations (1), (2), (4}, and (5) we form a recursive relationships

t-1 i-1
L L, _ - ._1 ~ ._1 — Z & '
RO -x (@-Hyd-=s & e (K Sléo e, () {6)
1=-2 i-2

-5 & k) * i) .
Sk:D ex() SjO ey(;)
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After some algebraic manipulations equation (6) reduces to

i-1

X (@) y ()=x({-1) v (-)+efe (-1}2 e (k)
Y k=0 %

. (7)

i-
2 : . 2 . ,
tste (1-1)jZ‘;0 e, () -ste (-De (i-1).

1f we now introduce equation (3) into equation (7), the desired recursive

relationship for the product is obtained:

i-1
=& i-y+sle (-2 e (k) |
Took=0 T (8)
i-1
rs’ e, (1-1)1_2=O e, () - ste (i-1) e, (i-1).

The block diagram realization of equation (8) is shown in Figure 2. It is
important to realize that in Figure 2 we use Z‘:nly scalers (s or 52),
accumulators, delays, adders, and multiplication by e (k). Since e (k)
is only +1 or -1, multiplication by e (k) is merely an exclusive-or
operation. Thus we are using only the standard digital manipulations

in this realization. We also see that this realization is independent of
the number of bits used in the original DM. That is, if we increase the
number of bits, we do not have to add new operations to this realization,

but merely increase the capacity of the adders, delays, etc.

.

3) Statistical Error Analysis

For any DM system the error produced is the difference between the
actual input signal and the DM estimate signal after it has been filtered
to eliminate the high frequency components introduced by the DM itself,

Let us represent this error as:
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If we assume that x and X are jointly Gaussian, have zero means,
and are highly correlated (as they should be because X is meant to be

a good replica of x), then the joint probability density function is given

as:
(@ B) = —L— exp{ [ -
p, ofa 3
X, X 2
WO Oan pe—g—— 2
2! x\x‘/‘ —ﬁ 2(1p
X X
[cvz "-2px}2“a«6 +n82
Lo * g Oa- 0%
X X X b
where

G‘X2=E (xz) = Varlgnce of x,

0 .~ =E (X*) = Variance of %,

2
X

Pym=E (xx) = correlation cofficient.

g Oa
X X

Now we can apply the transformation (x, 52) (%, € x) glven by

in order to obtain the joint probability density function px--—-?‘ €x {é, 8), which
¥

(10)

1)

shall be used later to determine the product error. This type of transformation

is well known {1 :,and the joint probability density function is alse jointly

Gaussian. It is given as:
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P (@B)= : exo { - [ ]
iy = — - _n? .
x'ex 2m o 'UE: V1= 02x€ . 2 (1 prx).
* x x (11)
sze
2 2
_— 2 — ]}
[c "o o Q'B+0€2. ‘
X X x T
x
where
2 2 2 2
o) - [ 4 = J —2 a O Tat O&
€x E(€) x pxx X x’
p =0 % _.p .0 o X€
X€_ x XX X X = X
o o o C
x &x X €
X

In a completely analogous manner, we can assume y and § are jointly Gaussian,
have zero means and are highly correlated and express py }; (e, B) just like
>
ti 10) except with ¢ , 0~ and - laci g ,a "
equation (10) P v %y p v replacing < % and px 2

respectively. Then we can apply the transformation

e =y -
¥ 4
and obtain py . (a,B) exactly like equation (11), again with ¢_, S
Y Y y
and replacing ¢ , 0 , and espectively.
Dye p ) % ex pxe respectl y-

Now we can form the product error:

€p=xy-}‘/(\§r”xy-§y“.

Using equations (9} and (12) in (13) we obtain

Gp:xy- (x- Gx) (y— Sy),

or

€ =x€ +y€ -€ € .

(12)

(13)

(13a)
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Under the assumption that x and y are statistically independent,

e =0, (14)

and the mean-square error is the same as the variance; that is,

. 2 . 8 T T pi
e =g = % g € + 2 x€ € - € €
Var(p) p v y < x€ v &y 2 xex y

(13)

-2veE, € 246 ¢ g2,
Yy g X v

All of the terms above are well defined from the above assumed and transformed
statistics. If we substitute the variances and correlation c't\Jfficients for

Xy }?, y.and y into equation {15), it becomes (see Appendix A)'}:

Oa —2p ~ P n T OaA T T a ., (16}

A P
Yy i

then equation (16) simplifies to

T 2 5 2. p2 :
N 20 fo (1 ). (17}



Equation (17) is plotted verses P in Figure 3. Here we see that the closer
the correlation coefficient is to £ 1, the smaller the mean square error.
Thus a measure of the quality of the product is the correlation coefficient
between the signal and the estimate; i.e., how well the estimate approxi-
mates the original signal.

43 Digital Multiplication Using Adaptive DM

Realizing that the main disadvantage with linear DM is its fixed
step size and therefore its lack of dynamic range, we would like to
extend our operation of digital multiplication to signals that have been
encoded with an adaptive DM. One type of adaptive DM is the enhanced
Abate mode which is described, for an input signal x, by the following

set of equations:
% (k) = % (k-1) + s, (k)

where

s, k=18 _(k-1) | e (k-1)+Se (k-2),

I

step size at the kth interval,

sgn (x (k) - x (k) ),

e (k)

and ) magnitude of the minimum step size.
We can also express the estimate, % (k), non-recursively, as:

) k
X (k) =2, 8, () -

likewise, a signal v applied to an enhanced Abate mode DM vields:

v {k) =y (k=1) + sy (k) -

(18)

(18a)

(18b)

(18c)

(19)
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where

s, (k)= | s, (k-1) I e, (kil) +Se (k-2), (19a)
e, (k) =san (v (k) - vy (k)), | (19b)
and also
”~ k .
y(k) =2 s (). (19¢)

Now if we form the product estimate as the product of the signal estimates

and apply equations (18) and (19), we obtain

-

& (0~ 2070 = (RE-) +S, ®)* G k-1 + 5, () - (205

If we expand equation (20) and employ equations (18c) and (19c¢), the
following recursive relstionship is obtained:
k-1
(k) =%y (k-1) + 5, (& 5, 1)

=0 (21)

~ k-1

+5, (k) on 5, 0)+ 5, (k) S, (k).

Equation (21) is not as easily realized as equation (8) was for the linear DM
so we must expand the last three terms of it to obtain a usable realization.
Starting with the last term of equation (21) and using equations (18a)

and (19a) with k-1 replacing k, the result is:



5,(<) 8, (k) = Is, (k1) Sy(k~1)l e, (k-1) e (k-1)

11)

+ 80 Is (k-1 fe_(k-1) e (k-2) + lsy(k—l)l e (k-1) e, (k-2) 1 (22)

2 - -
+ 8 ex(k 2) ey(k 2) .

Equation (22) is a recursive relationship that is easily realizable since taking

the magnitude of a quantity is a simple digital operation and the other operations

are merely standard digital manipulations.

' The second and third terms of equation (21) appear to be a bit more difficult

than the last term, but they can both be re.alized by introducing one clever

substitution. Expressing the second and third terms of equation (21) in

X (k) and ¥ (k) notation, we obtain:

k-1
sy(k)i;ﬂosx(i) = Sy(k) x(k-1) ,
and
k-1
Sx(k)EoSYm = sx(k) y(k=-1).

(23)

(24)

A recursive relationship can now be developed for Sy (k) %X (k-1) by using

equation (19a), equation (18) with k-1 replacing k, and the relationship that

is always true for the step size of an enhanced Abate mode DM:

5,(k-1) = |8 (k-1) [ (k-2)
or

ISy(k-lﬂ = Sy(k-l) ey(k—Z) )

(25)

(26)
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After the above substitutions and some manipulation, we realize the second

term of equation (21) as:

Syfk) x(k—.l) = Sy(k-l) x(k-2) ey(k-l) ey(k-2)
+ Sx(k—l) Sy(k—l) ey(k—l) ey(k-2)
+ X{k-1) S ey(k—z) . | (27)

Similarly a recursive relation for Sx (k) ¥ (k-1) can be obtained by employing lequation

(18a), equation (19) with k~1 replacing k, and the step size relationships

s (k-1) = |8 (k-1) [ e (k-2) (28)
or

’Sx(k~1) | = 5 (k-1) e (k-2) . (29)

The third term of equation (21) is thus realized as follows:
S, (k) $(k-1) = 8, (k=1) $(k-2) e (k-1) e, (k-2)
+ Sy(k—l) Sx(k—l) ex(k—l) ex(k-Z)
+ 9(k-1) S e_(k-2) . (30)

Observing equation (27) and equation {30) we see that
k-1 k-1 - k-2 d - - - -
5, (k-1) §_(k-1) e (k-1) e_(k-2) and S (k-1) S, (k-1) & (k-1) e (k-2)
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are needed for these realization. However, we have already obtained
Sx (k) Sy (k) recursively via equation (22); so we merely need to delay
S. (k k) and then multiply it by e (k-1) e (k-2) and e_ (k-1

x (&) 8, (k) an n ply it by e (k-1) e  (k-2) « (k-1)
e, (k-2) respectively. This then completes our realization. The block
diagram for the entire adaptive digital multiplier is shown in

Figures 4, 4a, 4a (i), 4a (ii), 4b and 4c.

5) Signal-To-Quantization Noise Ratio For Constant Inputs

Let us first consider the linear DM responding to an input x which
is a constant. In order to obtain the quantization noise, we must realize
that it is introduced via the A/D converter and therefore we must
differentiate between the sampled value of %, x (k), and the sampled
and A/D converted (or quantized) value of x, X q (k). The input-output

guantization relationship is shown in Figure 5. Thus

ky = m§ .,
xq()

where m = an integer,
and S = DM step size,
if (mS - 28) <x(k) < (mS + 3§) .

In Figure 6 we show the response of a linear DM to a constant input. It
is important to note that the arithmetic used in the digital DM is offset
binary and one characteristic of offset binary is that the difference
between two identical numbers is a "zero minus". This means that .
when Xq (k) = % (k), . (k) will'be -1, and we will always underestimate

our signal. Thus the linear DM is a biased estimator when using offset

binary arithmetic.
As we have done before, let us assume that the input x is Gaussian

with probability density function:
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o @) = ke O¥P (/20 ) (31)

X \/Znoxz

If we exahine % when it has reached steady state, we see that it is
repetitive and takes on values (x q s) and Xq as shown in regions R
and R, in Figure 6. Now if we also assume that § is sufficiently small,
then the sampled input x (k) is equally likely to occur in the interval

(x’:I - 38, Xy 13) . Therefore, the steady state-error
Gx(k) = x(k) - x(k) (32)

will take on a uniform probability density function [pgx(a) ] .
To determine pex (@) . we use the law of total probability as

applied to probability density functions:

p, (@) = p_ (el RERY PRy + b, (2] R € Re) P(Ro) . (33)
X X X

It is reasonable to conclude that since we are seeking the steady

state error that regions R; and Ry are equally likely when % has reached

steady state, Thus

P(Ry) = P(R2) = % - : (33a)

Returning to the conditional densities in equétion (33) and the previous

assumption that 3§ is sufficiently small so that x (k) is equally



likely for the interval ( xq - 1S, xq + 38 ) it is not difficult to

see that:

p. (a|ReR) = _1 : is<a<3s/2 ,
X S
= 9 . elsewhere,
and
p, (a|xeR) = _1 -is<a<is ,
X )
= 0 , elsewhere.

Combining equations (33) thru (33c), we obtain:

p, (@) = _1 ' -38 <@ <35/2 ,
[
x 28
= 0 . elsewhere,

Now we see that P, {e)is uniformly distributed over the interval

{-2S,3s8/2) , *  and we can prove that the linear DM is a biased

estimator by showing that ¢ x =f= 0 . Instead we can calculate

e = 'rap (@) de ,
-0 ex

()
1
3]
(4]

L)

15)

(33b)

(33¢)

(34)

(35)

Likewise we can calculate the second moment of &‘Xand the variance of Ex

-]

T 2
€. :La pex(a) da ,

2 - 2
€ 1S /12.

(35a)
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Var(e )} =€ 2 - ¢ 2,
X X X
var (e_) = §%/3. ( 35b )
Referring to equation (31), the input signal power is:
[~ -]
x? = jasz(a)da,
- 0D
=gl (36)
X N
Thus we can form a signal-to-quantization noise ratio for a constant input:
. 2
snR £ 2 - 39, (37 )
Var ( €, ) 2
Rnalogous to equation (13a), we can form the product error as:
€ = Xe + € - €_E . 38
p g TYE, xSy (38
where ex and € now have probhability density functi ons which include
the A/D quantization [i.e., equation (34) ]. Assuming that x and y are
statistically independent and P, () = py (o) = equation (31), we obtain:
. T 2
€ = - € € = -5"/4, 39
p x -y / (39)
and
€2 =x € 2+ y e+ 2xe vye
p Y x Yy

- - + .
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To completely evaluate equation (40), we must know the joint probeability

density functions fod and a,8), sothatx e -andye
y Pye, @R AR, 8) yemdye

can be determined. However we already know that the marginal densities

are Gaussian ( x and y ) and uniform ( € and ey ). Also the marginal

densities must satisiy

[-~]

and

With the previously specified marginal densities we conclude that

px c fo,3) = 1 exp (-a2/2 cxz) , —38 < < 35/2
‘' x o 2
28/ 2m o, Vo .

This means that

oo @B =p @ p, B .
X X

or that x and €x are statistically independent. Of course the same argument

applies for y and ey. Evaluating equation (40}, we seé that:

€ 2 = x* + v ¢ + ¢ e 2,
p ¥ X X ¥
2 2 2 2 4
TT L1870 + 180 + 49 3 ‘
p 12 12 144

(41)

(4la)

(41b )

(41c)

( 40a )

( 40b )
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Now we can evaluate the variance of ep and use this as our guantization

product noise:

Var (e ) = € Z . g *? '
P P P
2 2 2 2
= + +
var (ep) —‘-IS (Gx 9 y )_ —--—158 . { 40c)

Defining the product signal-to-gquantization noise ratio as

SNR_ 2 (x y)° , (42)
P Var (e )
P
‘we obtain:
360 2¢ 2
= . 4
SNR_ x %y (42a)

C it £. N+ 108t
x y

As a final comment, it is to be noted that the above SNR reﬂects.performance
before the final low pass filter where out of ioand noise {;S eliminated. Currently,
investigations are beincj made to determine the performance after filtering.

Now we will repeat the above for the case of an adaptive DM operating in
the enhanced Abate mode [ equations {18) ~ (18¢)]. It has been shdwn_:i_:ly SQ.ng-;,
Garodnick and Schilling [2] that in this mode of operation all sieady state
responses take on a "general error pattern”. The general error pattern as
shown in Figure 7, is the steady state response Xto a constant input signal
X, which has been quantized to xqe In the general error pattern, n is a non-~

n-yatwve integer, nr

n=0,1,2,3,¢n-N
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Employing the same conditions and assumptions as in the linear DM
analysis, we determine p’a (3] thusly:
X

P (@] n=v) = P, (@|n=y,R%e Ry P(Ry) + P, (@|n =y, %eRs) P(Ry)

X X X (43)

+ P, (@ln=Y,ReRy) P(Ry) + p_ (a] n=y,X eRy) P(Ry) ,

X X
P(Ri)=% , 1 =11,2,3,4 . (433 )
As we ¢an see from Figuwre 7,
p, (@ln=y,ReRy) = 1/s , (v + DS<a<(y+3/ys,
x _
' = 0 , elsewhere , (43b)
P, {e|]n=1v,%eRy) = 1/S , 3S<a<3s/2,
. .
= { s elsewhere , { 43¢ )
P, (aln=v,ReRy)= 1/8 , -(v+3S<a<-(y-3)8
X
= 0 . elsewhere , { 434 )
p, (@ln=v,ReR)=1/5 , -35-v<35
X
= 0 s elsewhere . { 43e )
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Combining equations (43) to (43e), we obtain:

e
X

= 0

p (aln=y) = 1/48
1/48
1/48
1/48

. (v+ hs<a<(v+3/2)s ,

, ¥S<a<3s/z,
.~y rPs<a<-(v-hs

1
, -i8<a<iS ,

, elsewhere . (43f)

We also notice that the probability density function of n, pn {v),

is discrete with values at

as P , where
o« (v)

_N |
L P (y) =1 .
y=0 "

e, (@)

y

=0,1,2,..., Nwhich we shall represent

(44)
To obtain the desired p, (o), we employ
‘ X
N
Pe @ = Z p_ (aln=v)P_ () . (45)
X v =0 x
The result is as follows:’
{due to Ry ]: P, (@) = P (0)/4S , 38.<a<3§/2 ,
x
= Pn (1)/4S . 38/2 <o <58/2 ,
= Pn (2)/4S , b§/2 <a<TS§/2 ,
= P (N)/45 , O +3)S<a<(N+3/2)s ,
[due to Ry ]: P -

1/48 , 38 <a<3s/2 ,
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[ due to Ry]: p, (@) = P (N)/48 , -(N+ 3)8 <o <-(N - 3)8 ,
X
= P_(N-1)/45 , ~(N - }S<a<-(N-3/2)s ,
= P_(1)/45 , -38/2<a<-35 ,
= P_(0)/45 , -38<a<is ,
[ due to Ry]: p, (@) = 1/48 , -ig <o <is . (46 )
x

Equation (46) is shown graphically in Figure 8. We see that this DM also
produces a biased estimate because

e = 15 , _ ( 46a )

which can easily be verified by observing that P {a), as seen in
x
Figure 8, is symmetric about o = $§. Using equation (46), we can also

calculate ?:;E {see Appendix B} and then the variance of ex

—-e_-é=_§f__‘ (6;1?+6ﬁ + 17, ( 46b )
X

12
var (€ ) = 52 -(3n° + 3@ + 2) , ( 46c)

6

Now we obtain a signal-to-qguantization noise ratio for a constant input:

A e 6 o
SNR = = N X . ( 46d )

var (e ) + 37+ 2)

E
i

If we proceed to apply the same analysis ag was done in equations
(38) thru (42), we can obtain a product signal-to-quantization noise

ratio for a constant input with this type of adaptive DM. The statistics
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that we use are:

8 =T = 1ig , (47

x y
and
e ? =¢€¢? = 8% (6n + 6T + T) . (47a )
X y 12

Applying equations (39) and (40a) :

= _ . =__2
T LT, = -5 | (48)
and
e 2= x% g 2 + yv2 e % +¢ 2 ¢ ?® s
e Yy x X y
e = 8 (o 2+ 0 H(6n’ + 6T + 7) + 8 (6n° +6n + TP, (48a)
P 12 % Y 144

It is significant to recall at this point that in order to obtain equation (40a) ,
x and ex had to be statistically independent. Although at first glance

it appears that ps (Q)Esaquation (46)]1'.3 dependent upon x, pe (@) really
X ) X

depends on P, (@) and as long as pX (o) is specified, then P, (o) is
X

independent of the actual value of x. Thus equation (40a} is applicable in
this case and equation (48%) is valid.
The conclusion is to now obtain the variance of e b and the product

signal - to-quantization noise ratio:

Var (s ) = g (cX3+oy2)(sE"+ 6n + 7)) + 88 [(6nF +6n + 7)2-97
12 2
144 (48D )
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SNR 4 (xz)z :
P Var (e )
p
576 ¢ 2 g ®
SNRp _ ’ = v a

128% (0 * + oyz) (60 +6n+7) + s*[(6n2 +6n+7)° 97

As with the linear DM, investigations are currently being made to
determine performance after filtering and comparison made with computer

simulation results.

6) Conclusion

As can be seen from the previous five secfions, many facets of the
digital multiplication using delta modulation problem are being investi-
gated. There are many more inquires that must be made. Among the
most pressing are a computer simulation and testing of the adaptive DM
multiplier, a determination of exactly how much real time storage is
needed, and analysis of performance after final low pass filtering. When
these items are completed, digital multiplication using delta modulation

can become an effective operation in digital processing of signals.

(49)



APPENDIX
A. Derivation of Equation (16):
Starting with equation {15):
= + + 2 xe g - e
ep x°E v vy € « % V4 v 2 Xe
- 2VY€E & + € 2 € 2 .
Y X X Y
oz ) z 2 3
= X" € + e + 2 xe € ~¢
yo e x & v)
T

if we use ¢
X

rr—

and xe 4 from equation (11) and the analogous forms for €

and yey ; the result is:

If we now exp a1 the above and cancel common terms, the final form

2
o) o -20p Oa + 05 + o o
x Oy ve Ty Uy $) (
+202-. " T O a L0/ ua-0 .2
( X pxx X x)(pyy vy ¥ v
+ "2 ~ 0A+ o\2 nz_ 2 -
(o] Pz O 2 g )(cy cy)

becomes equation (16)"

c? . %4+ g2 .7 2D AP A0 ©Ca.O
X Yy X ) KX ¥y X X y

24)
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B. Derivation of Eguation (46b):

Since pe (o) is uniform for each of 2N intervals, if we let PI
X
represent the value in interval I, then the contribution to € XE for

interval I is given as:

-

B B S T AR PR

The total E:X2 is obtained by summing over all intervals .

N (i+3/2)s
A {(p (1)/45 ) (2%/3)
x : ' n i+ 3
i=0 (t+3)3
N - (i-3%8
+ DLy e )(u3/3)' }
o i - (i+3)8
. ) 35/2
+ (1/48) (& /3) :

_%3
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B. Derivation of Equation (46b): - continued

Ingserting the limits and canceling terms, we obtaing

N
el = 12=0 {(Pn(i)sz/lz) [E+3/2)° - @=-91 } + 75%/24 ,
N
= {(Pn(i)sz/lz) (612 + 6 i+ 7/2) } + 7s%/24
i=0
N N N
=282 » %P (i) + 482 ¥ iP (i) +(35%/24) L P (i) + 75%/24 ,
=0 " =0 i=0 M

> nf + 8% n o+ 78%/12 .

Factoring the common terms yields eguation (46b):
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II. New Area of Research

A Digital Phase Locked Loop With Nonlinear Processor

The Phase Locked Loop (PLL) is a nonlinear control system which has been
under study by many investigators in the past few years as evidenced by the
literature that has been published on the subject. .Its applications range from
bit synchronization to carrier tracking to PM demodulation.

Until recently most of the emphasis has been on analog phase locked
loops as shown in Figure 1, This device consists of a phase detector, (PD),
a filter, and a voltage controlled oscillator (VCQO). The VCO is sometimes
called a slave oscillator since, in steady state, its average frequency is
that of the incoming signal wo.

The principle of operation is as follows: the phase of the VCO is an
estimate of the phase of thé incoming signal. This incoming signal plus
noise and the VCO output are inputs to the PD, The output of the PD,
¥ (t) is a function of the phase error, € (t) = @ m (t) - 8 v (t). This function
¥ (ty=1=f (€ (t)), is then filtered to form VD (t} which is the demodulated
output voltage. Since VD (t) ig proportional to the VCO frequency, & v (t),
we can write

t

8,0 =CGyog ] £ (M)-8 () n(-r)dA (1)
where h (t) is the inverse Laplace transform of H (s) the filter transform,
CPm (t) is the modulated phase, ev {t) is the VCO phase estimate, and f (x}
is the PD function. Thus it is seen that in the PLL, the error signal is
t:dterad to provide the necessary correction before it is fed back through
the VCO to the PD.

Now,however,with an emphasis toward digital processing, investiga‘ﬁion
into varlous types of Digital Phase Locked Loops (DPLL) has been initiated.
Iﬁ a typical DPLL configuration as shown in Figure 2 we see that the incoming
signal is first sampled and held and then A/D converted. This digital input
signal is now digitally phase detecte.d and filtered. The digital filter seems

to smooth the error signal ¥ (k) = f (® (k) - 8 (k)).
v
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In most PLL, the nonlinearity arises in the PD and the loop processor is
a linear filter. However, there may exist advantages in using a nonlinear
processor in a loop.

In particular, we are currently investigating the use of various algorithms
used in digital Delta Modulation (DM) schemes. Consider, for example the
DPLL system shown in Figure 3.. Here the error signal ¥ (k) is processed by

the nonlinear processor such that

e(k) = sgn [y (k) ] (2a)

and k-1 k-1
Vptk) = 8 2 e(i) = B 33 sgn [ (1) 1, (2b)

i=0 i=0

where Ao is the step size of the DM. Thus the DPLL response equation is

given by the nonlinear recursive difference equation

B k1) - 8 (k) = G,osen [k 7T, (3a)

where Bv {m) is the estimate of the incoming modulating signal at the mﬂ'1

sampling instant and G is a constant gain. By letting the derivative at

th VCO
the k' instant be equal to a difference i.e.,

x(k) = [x(k) - x(k-1)] ' 4T, - (3b)
we obtain the following:

etk+1) - = {1y + ek-1) =G sgn [y (k) | + Lo (1) -

VCO

20 (k) +o (k-1)7, (3¢)

It is seen that this DPLL system can be considered as a second order
PLL using a digital filter employing 1-bit interval arithmetic. As such it
is characterized by a nonlinear difference equation. This system is obtained
when a processor used in a linear delta modulator is inserted in the loop.

The nonlinearity is the sgn function which resuits in a binary phase detector,
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As another means of nonlinear processing, the Song and Abate mode
algorithms for Adaptive Delta Modulalors are chosén,

The generalized equations for these modes are as follows:

A} Song Mode

vpk+l) = V(k) + AV (kD) (4a)
AV k) = e [ & Vo (k=1) [ e(k-1) + B | b VL (k-1) | e(k-2) (4b)
e(k) = sgn [ ¢ (k) ]. (4c)

Hereb VD(k) is the adaptive DM step size and o, and 3 are constants.
Appropriate scaling can be introduced at the e(k)'s. Experimentally and
theoretically it has been determined that ¢ = 1, and B = %, are optimum
values as far as performance and hardware implementation (cost).

The DPLL response equation of this system is as follows:

o (k+1)-28 (K)+0 (k-1) = gd{ | & (k) - 28 Sk=1)+8 (k-2) | -

[etk-1)+ S ek-2)7 | »

(4d)
where 94 is a scaling factor.
This type of DM was found to work woil with video signals and
therefore application of this loop to video transmission bears
investigation.
in the Abate mode the following equations govern the system:
VD(k) = VD(k -1) + A& VD(k) | (5a}
= — — e -
&V (k) l AV - 1) [ ek - 1) BV elk -'2) . (5b)
e(k) = san[ ¢ (k) 7. (5¢)

In the above ﬂVO ig the minimum value of step size. The egquation

of response for the DPLL in this case is:
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o (k+1) =298 ()+O (k-1) = { |8 () -28 (-1)+8 (k-2) | -

e(k-1) + Gy B Voelk-2) b 54)

This algowilhmhas been successful for voice and so this loop bears
investigation for audic application.

There is a & wilicily ‘o these equations. Techniques to solve
the above nonlinear difference eguations are now under investigation.
Note also that these equations are for signals with no noise present.
The response of these PLL in the presence of noise will also be
investigated and performance on a SNR basis will be evaluated and
compared to other present day systems.

Pull-in time and lock -on range will also be determined and an

attempt made to minimize the pull-in time.
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AN ALL bIGITAL PHASE-LOCKED LOOP FOR FM DEMODULATION

John Greco and Donald L. Schiiling
Department of Electrical Englneering .
City College of The Clty University of New York'
] New York, New York 10031

Abstract

An all digltal phase-locked loop for FM demodula~
tien s presented. The unlt operates as a real time
special burpose digital computer and employs a square
wave voltage controlled oscillator. Deslgn procedures
are glven for a {lrst, second, and third order loop: the -
deslgn reflects the influence of the square wave oscilla-
tor as well as quantizatlon limitations. In an attempi to
obtain {nformation about the threshold of the digital’
phase-locked loop, tho response to arificial {nput noiae
spikes is examined.

1. Iniroduction

The bBlock diagram of tha diglial phaso-lochkead toop
(DVLL) [s shown In Fig. 1. Al slgnals to the rlght of the
A/l) converlar ara binary words and all compuiations
within the DPLT are digltal, The digital fiiter s olther
a propovtlonal path, o proportional plus Integral pnth, or
e proportlonal plus integral plus double fntegral path
ylelding the {ivst, second, or third DPLL rogpactively,
To simplify the iirﬂ}lomcntd lon, the filter gains are re~
stricted to be 1/277, with N an integer, so that coeffi-
clent multipl{caifon is reduced to shifting the binary
word. To avold a binary meltiplicetion of the input My,
and VCO cuiput wy, at the phase detector, the digital
VCO waveform is a square wave having values %1, The
multiplication is then reduced to a simple logic opera~
tlon. An slgorithm 1s develeped (1) to dotermdne the
correct output of the digital VOO and an implicit VCO
goin s Intreduced (1) 1 Gyop =0 2“/5, W = integer.

2. Dinitel Phase-Locked Loop Equation

To avold distortion in the sampled neomis ag Fi4 sig-
nal, the ssmpling frequencsy, LQ. is chosen socording to

¢ £ (1&}

nf =§f -« RBf2 ihj

f=f, - Bf {1bj

where B =~ IF Lbondwidth

= 2m b

m
n = integer

f. = carrier frequenoy.

0
The VCO cutput is given by
1 ” ' ‘
ty = 8d (1:;—"4- Py : ‘ (2}

b

whers t?’; = YO phase,

8q {x} =

L

and Sq ) ke periodic with pariod 25 A_n o D’:’I.}‘_- oulput

¥i. is the derlvative of the VOO phase q? ;in our digivs]
i,
soaems the uc:iv silve is computed bs the cd Faorancer
“ 5 .
LY =t {0} - 5 B . ) o
Y™ T Ty o S

3 phane ercoy

LR BN T N Sy, I
al filter charactaries

PsPEY. u
TR Py e YLy ana ¢
wo obtotn the duference equalicos for

Por tha

mldndng Bys (8) and {8

she VO3F phages

¢ =0

kay = Py~ 2G cos (k

T .
+w}‘:)8q(kﬁ+wk) (%)

where G = loop galn. This nonlinear difference eguation

- 1s extremely difficult to analyze and so a Iineari‘.ed

model 15 introduced.
3. Linearized Model

The function 3g (.) containg odd harmonlcs and the
preduct of input and square wave produces harmontos
at U, fy/em, 2i5/2m, .. ., Nf /2m, ... H2. Of course,
the zero harmonic {s the only uv,c,ful term ag {t contains
the phase error information. Hencae, we would liko to
have the other harmonics fall outside tho' FLL banc-
widtit,, Bui this i fmposstble ag the (2m)™! harmonic i
at fg Hz which {9 equivalont to 0 Hz. Thot ia, tho sllag=
ing producod by sampiing introducos & torm ot 0 Hez,

This torm has amplitudo on the order of 1/am, and po &
appoars that we should chocao m largs, Howover, chogg=
Ing m large results fn the harmonte at f ;2 ™ bheing fne"
troduced Into the IIPLL bandwidith., The cmmt afnt wo
impose is to have this harmenie fall outside the DPLL
bandwidth, If the input frequency deviation ig af, the
bandwidth of this harmcmic Is approxtmately 4 44, and
$0 the consiraint is .

ffzm-zﬁfEBL (9}
with By, = DPLL bandwidth,

U we can choose m =3, the (Zm} harmun!.c will be
at least 20 dB below the fundamental and its contribution
to the output and VCO phase can be neglectad,

With Fur (8) satisfled we introduce the lnearized

- 4

H
A

o

modal of the DPLL by using the VOO fundameants] to TANST~

ate the phase error. This fundemental g amplitude

4 /7, and assumlng ! << N/2, we arrive at the Hneari~
zed model shown in }ig. 2, where '“’\’OO = implicit VOO
gain, :

4. Phase Error Contraint

The phose error e, should be small sa that wWe oneraia
on 1he Hnear portion of the phase characteristic: i.e., sin
ey, e},. The error in this approximation is referred to as
harmodlc distortion. However, e, is represented by a
Hrdte number of hits and & small €y wiil be lost in the
quantlzation noise, Hence, an optlmum phase error oxlig
for which gigral-to-harmonic disiortion and cignal-to-
Guantization nolse are equal. These guantities ars com-
puted {assuming ey unlformly distributed over its range)
and plotted sgaingt {er} s for 10-kit quanit zalion and
12-hit cuantization in Fig. 3, The tre vwhauu give iht.:

optlimum valus of o) P ‘
HE
Number of Bty N A fvolies
et A . LA, SN
10, : .35 .
?‘_Z P v ' . G;ES R

(€

AN

i ¥ T t i
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‘ fore' )
amAL/E S
< .
= 0.35 A {7}

3

The DPLL bandwidth By, 13 glven approximately by
. N ? . . B .

: BT T : (8
“  where the approximat*on is val id for %‘G <<1. Utilizing
Eq. (9} in Eq. (8, : '
¥ B |
i 2 o :
K £ - 202 S5 G . (2)
2m . :
Comhining with Dq (7) yielas ihe design equation
< f
m = 1128 fxf : S

The DTL and TTL logic emp‘oyed nacessiteted the valua
Afs = 50 kHz to provido 3 sufficiant computation interval,
Cheosing 4f = G600 Hz we obtaln m 57.4. Weo shall use
m = § (the VCO algorithm s stmplified when m is & pow-=

-er of 2), We furthor obtain from Eq-(7) G- 2.214 and -
By = 2.14 kHz. The cholce m = G invalidates Eg (B); we .
shall choose :

G =157 =1 /5. 20
and allow (& } w .40,
mation of Eql {t?is conservative; thw actal bmrheidth

is 1.8 kHz) and Eag. {h) is satisfied.
Summarizing, the parameters for.the first order DPLL

(1)

are: L
S £ =50 kHz
- o3
Bf = €GO Hz
G = 0.157 = 7 /5 - 2*

£, Dasign the Second Order DFLL

The digitsl i 1 tar ix augmented 1o a proporiionszl plas
fntearal fitter having transier funciion H{z) glvon by

. © 1
H{zm = gy + gg oo 0eT

where g, = proportionai poath gain
oy = integral path gain.
VWe shall usze the seme sampling Zrgguency an
dev*a ion computed for the first ordar DPLL.
ihe gecond DPLL tracks & frequency offset with zero

phase error. Therefore we consldar. ginuzoidal modula-
tiore % =0 sin k 20E, /fe. IF E o S £y, the phase

/ error am nli"udc is

(12}

Tira

(o))
T RRET AR et k } M m! e

agral loow, Choasing §
aln from the pnaw emm Y

whare Gz = galn of th
w00 Tim (B = 3] we

Go & 0065, Wae choosa intlally Gy .
How we have m and G, at out dis; mual to mfa:ﬂ Ea. {E}
But we wish to sshleve more than simply satdsfying thin
Ceaustion--~we seek g second order DRLL which vides

“ghreshold Linprovement over the first order DPLL, To galn
insight inio thoe 1oor' s hbehavior near threshold, we in-
troduca an artlfical spike to the DFLL and observe the

_vosponse VO 1, WBndd, C whously, Af the VOO thase
- iellows the innul i
outpel,

The model nged for
of Gyadiang (n the input phaze:

_galntom fi-2

d froeguency

IR SRRV ¢ 1) I

(@ w(} -~ 4 cos kT /K) (14)

klapike
The spike duration, K/fy, 1s chosen ‘ag the reclprocal of
the IF bandwidth; this is the fastest spike possible.
Thig aplke 1s superimposed on constant or sinusoldal
modulation, producing a positive splke when the 1nput

" frequency is at the left extreme of the IF bandwidth.

The nonlinear difference equation is solved on a com-
puter for the VCO phase and the solution is examined
to determine whether or not the loop {ellows the spike.
Note that the linearlzed model is not valid when a splke
appears as the phase error becomes large. Also note
that the carrler amplitude remalns constant during the
splke; this represents & worst case as In actualily the
amplitude decreases

The results are displayed in Flg. 4, where the spike
responses are displayed as a function of leop galns.
Fig. 4 {a} is the case of the spike superlimposed upon an
dnput {frequency deviation of 608 Hz; Flg. 4 (b} 1s for
sinusoldal modulation with £ = 200 Hz and 3 = 3, They
clearly show that m = 0l s unsatisfactory as the lecop
bacomes unstable for almest all values of (3. - The case
m =4 is not rm,lch better. If we decrease the integral
{and gonseguently lncxe ASE@ il.c, phase
error) ther we can choose G=7/5.2 Lormfs.29 or
11/5-25; The finzl choice depends on satisfying Eq. (5)

Then By = 1.57 kHe {the spproxi-and also on the linearfzed input-cutput leop transfer

funcilon. As we are Interested in FM demodulation, the
DPLL transfer function should be as {lat as possibie out

to f I‘xaming these conditions leads to the chelce
Gy = 'n,”J 24
E.ummari?ing, the second order DPLL gains are

Gy=1 /82" Gp= /st

T. Deslgn of the Third Order DPYL

A double integral {ilter s added {e the previous
filtzr of Bg. (12):

1

1 2 A
T et FOs (T (15)

Hiz) = yy + qz

viaiding the third erdar DPLL. For sinusoldal modulation,
the phiose arror amplitude is approximately glven by

3

(e}

) man (18} -

whore Gy = gain of the double intagral path, Imposing

" the phase error restriciion yields (using 4T =600 Ha

and 1§ W 200 h_} Gy 2 0.000132, We choose

Gy~ 02000154 = 1 /5.21% and m = 4. The values of

Gy and Gy are ohosen from th spike response and ling-
avirad loop characterigtic. The spike responses illug~
trated in Plg, (5} show that there esxist several palrs of
galns Gy, Gy for which the ihird order DPLL suppressas
the input spike, both for constant and sinuseidal modu-
letton., To anmrow the chelee, a npri)r:e lasting

2/ {IF bandwidth} seconds {s introdueced and the

final chuice is

‘ 3
(g = ﬁ/Sazl“

daing produce o linesrized charact
thin 8.5 d8 o 280 He and has a
width, thareby satisiying Eq. {5).




B, Conclusions

An all digital phase-locked loop has heen presentod
and a design procedure for o first, socond, and third
arder Joop is developed, The procedure invelves quanti-
zation effects and response to artificial {nput nolze splkesa,
Experimental results based on this design will be present-
ed. -
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OVERSHOOT SUPPRESSION IN

ADAPTIVE DELTA MODULATOR

LINKS FOR VIDEO TRANSMISSION

by : 1

L. Welss, 1. Paz, D. L. Schilling
Department of Electrical Engineering
# The Ctty College of C.U.N.Y.

ABSTRACT ' )

An overshoot suppression scheme to improve the per-
formance of the Digital Song Adaptive Delta Modulator
for picture transmission Is described. The overshoot
suppresslon algeorithm has been verified using computar -
.simulation on a PDP-8, It is also shown that the addi-
tional hardware required for the actual implementation
of the algorithm is simpler than those encountered in
the literature, and gives better signal tracking accuracy,

I. INTRODUCTION

Delta Modulation 1s the name of the encoding pro~
" cess in a Digital Communications Link that allows
for only changes in the input signal to be processed
and transmitted, Using this procedure the tink Ls
usually required to transmit only one bit per sample,
" resulting in an improved bandwidth utilization effi-
clency over that obtained with PCM systems, "

Briefly, a delta modulator operates as follows. The
amplitude of the signal to be transmitted is sampled
perjodically and compared to an estimated value, The
. estimated signal is obtained by incrementing the

previous estimate at each sampling time by a discrete

amount called a step size, The sign of the difference

between the signal and its estimate is used to decide
if the previous estimsate should be increased or de-

" creased. This sign information {one bit per sample) {s
also transmitted over the channel to the decoder. The
decoder uses this bit stream to construct the signal
estimate.,

A video signal is characterized by digcontinuities
of large amplitude and very short rise time, This cor-
responds to abrupt changes in shades in the plcture
content. A linear delta modulator is limited in its
ability to track sudden input changes by its fixed step
size. The magnitude of the steps is bounded by thé
permissible granular noise in constant shade regions,”
see Flg la. Shade contrast is thus degraded by the so
called "slope-overload-noise” introduced by the delta
modulators inabilfty to rapldly follow the signal dig-

- continuity, To alleviate this condition, while maintain-
ing the permissible granular noise fevel, it 1s desirable
to make the step sizes small inftially but allow them to
increase guickly In some nonlinear fashion when tracking

. 8 rapldly varying input, see Mg 1b. This is done in an
gdaptive delta modulator “*2*

The sharp rises b a video signal are usually follow-
ed by regions of consiant level dus to reglons of uniform
shade In the picture, Thus while alleviating slopa over-
load problems, an adaptive delta modular introduces the
possibility of largo overshoots when the tracked level
is finally reached. Furthermore, the overshoot is follow-
ed by o translent esclilatory response until the delta
modulator finally locks onto the tracked signal level.

The research presented in this paporwas partially
supgorted by NASA grants NGR 33-013-063 and NGR
33-013-077,

These effects are shown in Fig I(b).

Both the overshoot and the subseguent recovery
time are undesirable attributes of an adaptive delta
modulator. Reducing the step sizes decrease the
possible overshoot amplitudes and shortens the recovery
time. This, however, augments slope overload. A trade-
off therefore exists between overshoot amplitude and

recovery time versus slope-overicad-noise in an adap-~
tive delta modulator. )

Overshoot suppression is a scheme te sharply limit
the overshoot amplitude and reduce the subsequent re-
‘covery time. This is done without reducing the step
sizes until overshoot is Imminent, The trade-off hetween
overshoot amplitude and recovery time versus slope-
overload-notse s thus relaxed.

An overshoot suppressioglr scheme has recently been
suggested in the literature . This schéme. however,
uses a look-up table in which arbitrary values for the
step sizes are suggested. It could therefore not serve
the optimal delta modulator we are investigating in which
the step sizes are obtained by explicit mathematical ex- -
pressions, Furthermore, the maximum step size is limited
In the above scheme by overshoot conéiderations. How-~.

_ever, in the Song Delta Modulator, the siep sizes can

continually increase with the overshoot suppression
scheme described below, thus vielding better signal

to slope-overload-noise ratio. Moreover, the amount of
equipment involved in implementing the proposed over-
shoot suppression algorithm is very modest in comparison
to the equipment needed to Implement other proposed
schemes, and could fit Into any adaptive delta modulator
in which the next step size is explicity caleculated, It

is alse flexible as to the amount of overshaot subpressic‘m
it can perform and trade-offs between conflicting factors
can be accurately set as may be'necessary, '

I, VIDEQ TRANSMISSION CHARACTERISTICS OF THE. - -
DIGITAL-SONG-VARIABLE-STEP-SIZE DELTA MODULATOR

Figure 2 shows the structure of the digitaily ImpleA—
mented optimum adaptive delta modnlation system re-
ferved to in this paper. Briefly, its operation is as.
follows;

The input signal 5(t) is sampled and i to D converted
to give .. Sy is then compared to ltg estimate, Xy,
generaling a sign-hit ey, with

e = son, (Sk—xk) ' ' (1)
where .
'xkzxk-—l{-Ak. o . E : 7{2)
The step size at the k th sampling instant ig
4 =g . :
k- g (ek“l' Ak-l) + g (Ok-z' 4 k‘l) ) (3]

Thus the kth step slza depends on the previous step size,
and the previous two slgn bits, The g, and gy function
choracteristics are shown { Fig 3 indicating that:
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where & 1s the minimum possible step size. The * .
special fegion; 18, | <2 8., i5s needed to prevent a
dead zone at the oi—ﬁjin. The decoder is just the feed-
back portion of the encoder, It reconstructs the approxi-l
mation X, from the e, sign bit stream. Xy is then D/a
ccnverte}é and low pass filtered to give 51}, the es-
timate of the transmitted signal.’ .

In video processing, S{t) will contain many large
discontinuities of very short rise time followed some-
times by constant levels. Thus cdge response is extreme-
}y important in video, To permit §(t) to approximate
rapid rises, f.e., minimize slope ~overload-noise, rapldly
increasing step sizes are required. This can be accom-
plished by increasing a, 8, as well as & _in (4). Gains
in reducing slope-overload-nolse are made at the expense
of large overshoots and long subseguent recovery times,
Furthermore, it can be seen in Plg 1(b) that good-steady
state response, 1.e., small amplitude oscillations about
a constant level in S(t}, requires small 45, It can also
be shown that the delia modulator becomes unstable i
& and 3 are made too large. Thus In choosing «, 3, and
Ao a trade-off must be made between slope overload
noise versus overshoots, recovery time, and steady
state response while maintalning delta modutator stabili-
ty.

The addition of overshoot suppression to the adaptive
delta modulator permits @ and 3 to be lncreased while
decreasing A - In this way, slope overload as well as
small steady state response requirements can he met
simultanecusly. Impending instabilities due to large o
~ and B arc also inhibited and, obviously, overshoots and
subsequent recovery timas are minimized.

111, THE PROPOSED OVEi’%SHOOT SUPPRESSION ALGORITHM

The Overshoot Suppression Algorithm may be under-
stood by considering the four cases shown in Fig 4 In
which an overshoot or an undershoct occurs. In Fig 4(a)
an overshoot occurs at sampling time k-1 followed im-
mediately by an undershoot at k. For this case 1t is
easy to show that the delta modulator considered wiit
approach its steady-state condition rapidly. This ls not
the case In Fig 4(b) where the overshoot is larger than in
{a) and X, Is 'greater than 5. Conseguently an under—
shoot occurs at K+l or later and with an amplitude larger
than in {a). This occurs because the step sizes beglin
ihcreasing agaln after the ffrst reversed step. Thus it
will take many more sampung perinds to reach steady |
state in (b) than in (). The algorithim is therefore lm-
plemented only when case (b) occurs. Note that Flg 4(c}
and 4{d) depict undershoots corresponding to the over-~
shoots in 4{g) and 4(b} respectively. Actlon to prevent
excessive undershoots 1s thus taken only for case {d}. |

The occurrence of casas (b} and (d) can be recognized
by examinlng the sequence (e, . e]'_ » By ,.e},}. Tha
fingerprint of (b} Is {+1, +1, -1, 3—1},‘ ? whllb that of (d}

s {~t, -1, +1, +1). When elther gequence is encountered
action 1s taken to prevent overshoot or undershoot, .
The. corrective agtlon entails decreasing the gtored valuos

i

larger o and 8 (see Eqg 4)

6D-2

of & and hence X and ¥, . Case (b) is thus trans-
forméd into a case (4] 'situatibn and the same for (d)
and (c) respectively. The shape of the modifled

. waveform actually depends on the amount by which

A
A

ol

k-1 is decreased. The simplest scheme 1s one where
iy replaced by half of its ortginal value, We may
ot for more rapldly increasing step slzes, A L ile.,
.aslongas & s replaced
by a smaller fraction of its original value when over-
shoot suppression is employed. Thus there Is a faster
inittal rise coupled with a very sharp braking action
just hefore the desired level is reached. However,

"since the braking actlon oceurs close to the desired

level thereds nominal slope-overload degradation,
Indeed, there is an overdll decrease in slope pverload

. noise due to the more rapld-increase in the Inltial

step sizes.

Now the Oveshoot Suppression Algorithm is applied
to the adaptive delta modulator operating in the Song
Mode, l.a., =1, =0.5. It 15 shown elsewhere 4 that
usable video _transmission can be obtalned using these
parameters even without overshoot suppression. With

the addition of the suppression algorithm video reproduer | . .

tion should be much improved. ‘

The salient features of the Song Mode response are
now summarized, In approaching a level from above or
below as in Fig 4, each step size is 1.5 times the pre~
vious one (see Eq 4 for ¢=1, 3=0.5}. When a direction
reversal occurs, as at gampling time k in Flg 4, then the
fHirst step slze followling the reversal is one half the
previous step size, l.e., &k =1 Ak (see Eq 4). Thus,
in Fig 4{b)(we have I R

Xy = e ™ Ak-t - xk—z * Ak—l
The inequality: sign is needed due to the {ixed point
arlthmetic employed i the digital implemehtat ion.
Also in Pig 4(b) ¥ - < Sk < Xk To implement over-
shoot suppression set (&, }''= % & |, where the
prime refers to the new véfdes after }fﬁé overshoot sup~
pression algorithin has heen implemented. Therefore,

1
Z

1
F

- {5)

.'{Xk-z)l - Xk-—,z P Xt 5 Ak-i (%)

Next, set ‘ ' ' ; L
.‘(Ak)! = k=_%,&k-1 {7) -

Thug ! o s
ST ER Y (B =X (8

Hence, Fig 4{b) has been transformed Into Flg 5, with
undershoot occurring at k rather than k+1 or later. It .
should be evident from Fig 5 even without a detatled
explanation of the worst case that the overshoot has

- been at hest entirely elliminated or at wérst cut in half

depending on whether S(t) is closer to (X, )} or X
respectively. Flgure 5 also shows that the reccn.reﬁ;"E
time 1g graetly reduced, slnce the delta modulator laocks
onto 5{t} very rapldly after sampling time k. Note algo -
that now (g, )" = sgn. (S], - (Xk)') =41, whereas in

Tho above overshoot suppresston scheme 18 now
summarized in fhp form of an algorithm by'coﬁsidei‘iugw
o typleal eycie of the now modified delta modulator.



Step 1: Ganerate § .
Step 2: Calculate =q (G q‘ )+ 92( k-3 "}_1)

Stap 3: Calculate )(k )(k + ﬁc

Step 4: Calculate ek = sgn, (Sk )(k) and t;ansmit
this bit.

In the delta modulator without over shoot sup—
. pression this would complete the cycle. That is,
k is next updated and steps through 4 are repeated.
To implement overshoot suppression the following
additional steps are needed.
‘Step hy If ek_3‘= ek~3 =+ 1, and ek_1=ek=-l,setv=l.

1f ek_3=ek32 -1, and ek_1=ek = 1,set W=1.

Step 6: If VLl and W#l go to 7, otherwlse set
(@ (G _)r=bo
() & )= ey * (EL )*Xk_, L
(©) (4) ~t;c=——q<_3
@ 00 =K G =X
(e) (o)) '=-e,
" @tep 7: Update k. That is, set ey

1 if step 6 is exe&utc&ez ) -f(e ),

oﬁé’m{{sé e = k.' etc.

: IV. HARDWARE IN'PLbMFNTATION CF THE OVER -’
) SHGOT SUPPRESSION ALGORITITM . 5

The implementation & the above overshoot sup-
pression algorithin requires the addition of very Ht-
" ile hardware to the Digital Sonyg Adaptive Delta Mo-
dulator. This can be seen by considering the sche-

" .matic representation of the delta modulator CODEC

{Coder-Decoder- Combinatton} with overshoot sup-
pression shown in Fig.2. Note that the extra com-
ponents needed to implement the suppression schame
appear ln branches that are drawn with dashed lines.
Of these, the only major devices are the delay ele-
ments D5,D6, and the adder A4. However, since the
adders £1,A2, and A3 are really.one time-shared
adder, we can casily time~share adder A4 also. The
remaining extra elements are only a [ew gates needed
for decision, switching, angd timing purposes. Note
that the execution of step 6{a} of the algorithm,(bk_ )
= %j , need not require the addition of any explicit
" hardwdre, We merely read into adder A4 the contents
of the regtster shifted by one blt, thetoby result- |
ing in a Wvislon by two,

It 1s difficult to discern me operation of the clr-
cult hy mersly examining the schematic diagram in
Fig.2 because the sequentlal order of oparations 15 nat
not specified In thy diagrem. However, the actual ope~
ration is made clear by considering Flo.2 in conjunc-
tion with the seven steps of the overshool suppres-
slon algorithm. '

The additional steps & the algerithm place an
added requirement on the loglc spaead, After the com-
pletion of a normal cycle of the delta modulator, nx-
tra time ts needed to perform two more additions and
the varlous logic cperations nceded to rearrange tho
internal values, No probiem will arise i this can be
done in one sampling perled, If It cannot, then elther
the sampling rate must. be decreased, or logle com-
ponents capable of higher switching specd must he
u_.e;slt. this point, it should be pointed out that a signi-

ficant stmplification is possible in the encoder impleme n-
tation, Namely,Step 6(b) and hence Step 6(a) do not

_have to he explicitly executed in the encoder becaus e

(X4~ )! 1s not really needed to compute {X,)* In Step 6idy,
j.e. ,(xk) is simply replaced by xk_ which is avallable in the
memory. rurthermore, it is easy to show that ) ts
not used in later cycles due to the fact that onceé Isn over=
shoot is suppressed at k-1, the earliest future tlme for
implementing the a&lgorithm 1s at k+2. By this time X

is clocked out of the memory. In terms of hardware sa\}-
ings in the encoder this eliminates the gates neededto
produce !bk , as well as A4 and A2 to cory
out Steps G{}) and S%SITE:spectively. These simplifica-
tions are not possible in the decoder because its output
with overshoot suppression, has to he taken from

rather than from X, . Note that if the output was taken!
from , then the Svershoot suppression preduced by
going ack in time and reducing Xk wotld not. be evi-
dent in the output § {t). ot

V. COMPUTER SIMULATIONS

The Digital Song Delta Modulator, with and without
overshoot suppresslon, was simulated on a PDP-8 com-
puter. The minimum step size used {4g) was normalized .
to unity. The dynamic range was 0 tc 1024 A , This cor-
responds to a ten bit internal arithmetic in an actual
hardware {mplementation.

The responses of the delta modulator to step fun-
ctions of different amplitudes, with and without overshoot
suppression, appear in Flg. 6, Figs. 6(aj, ad \B{b) exhibit
targe overshoots and sustained oscillations. They corres-
pond to the sequence e = e =1,e  =e=-1, where
k-1 is the sampling time @:hen cﬁerqhoo “Yoceurs. Figs.

6(a'), and 6{b"') are the samae waveforms but with over-
shoot suppression. As an example, compare Figs.G{a)
and G{a'). Here the maxlmum peak-to-peak oscillations
are reduced from 224 to 94, . Similar observations can he
made for Flgs. 6{b) ahd G(b'}. Furthermore, here the settl-
ing time to the steady state Is reduced from six to three-
sampling periods.

While Plg. 6 gives a good indication of the general
nature of the improvemsni, due to overshoot suppression,
a mare convineing Lllustration is depicted in Fig.? where
the discontinuities are much larger. Note that the appa-
rent slow rige times in Pig.7 are due to the compression:
produced by a scaling factor of 0. tused in the plotting, -
In reality Fig.? rises o er a tange of 50004 in only 13
sampling perlods. To achleve the same dmy?l!,tude a non-
adaptive delta modulstor would require 504 sampling
perlods.

Briefly,the sallent features of the rasponse are as
follows: The rise tine to reach a given level is the same
with or without cvershoot suppressien. Overshools are
suppressed by a minlinum of 50%. Recovery fimz s {ollow-
ing overshoots are stgniflcantly reduced as seen in Tig.7h.
The data plotted in Pig.7 Is given In Table 1 for quantita-
tive comparisons. The peak-to-peak amplitude of the siga-
dy state response is three times the minimum step slze
for elther scheme. The partod of steady state oscillations
1s 4 sampling perlods without overshoot suppression, and
8 sampilng periods with overshoot suppression, In elther
ease, the peak-to-peak steady state osciliation amplitu-
des are smaller than a grey level in the pleture waveform,
Thus constant shade roglong will not suffer signilicant
degradation.
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This 12 basod on the assumption of quantlzing a pixel
into 64 groy levela with a total dynombe range of 10244
VI, CONCLUSIONS
An overshoot suppression algorithm has been prop-
osed and verlficd by computer simulation. It has been
shown that the scheme signiflcantly improves the
transient behavicr of video waveforms transmitted
uslng delta modulation techniques.
The maln advantages of the proposed algorithm are:
(a} It can be easily utilized in optimal digital del-
ta modulators that ¢an be described by a closed
~form mathematical formulation and in partic-
ular in the Adagtive Song Delta Modulator.
(b} The scheme has rather modest requirements for
hardware fmplementation, .
{c) It allows for {lexible trade-off between slope-
overload and overshoot noise.

Therefore, the additlon of the overshoot suppress~
{on aigorithm slgnificantly improves the performance of
the digital delta modulator for picture transmission,
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Ka Q.000¢ SHn 50P.5  AKe= B.000
e 1.000 SHm RO0LE  XKe 2000
K= 2,000 SHE 500L.5  XKe 5.000
K= 3.000 5= 500.5 ° XKa 9.000
M= 4000 SHx 500. 5 X®= 15.00
Ha 5.000 SHa 5006+5  Xfa 24.00
Ma 64000 SHa HBOA.5  XMe 37.00
Ke 7.000 SHa 500.5  XHa 56.80
K= B.000 SK= 5@03.5  X¥= 84.008
Ke 9,000 SK= 500.5  XKo 1269
Ke E(1.00 Si{= 500.5  XH= 18%.Q
Ke 11.00 SK= 5A0.5 XHa 2830
K= t2.00 e SAM. S XKe 42440
K= 13.00 SKe 500§ XKa 63540
B 1a.00 Elfs 500.5 A= 530.0
T 15.00 KM Sp{1.5  XKe 373.0
o 16.00 SKe S500.5 KHe AG5140
He 17.00 Sa S00,.%5 XKu 560,90
Kx 16,00 SKo S0P.5 XK= 510.0
K 1900 SHa H0M.5 XK= 4R21.8
Ke £0.00 SHn GR35 XKn 46640
Ke 21.0d 3.5 XKe 530.0
Km 22.00 500.5 XHa a%3.9
Ke 23.00 5305  XHu S14.0
He 24.00 50(.5 XK= 5860
Ks RS.00 RA N XM 49440
Ra n6.00 AAA.% XK= 5060.0
e 27.00 3005 XKn 49T7.0
Ka 20,00 ABN.5  HHe 493.0
Ka 29.04 ant. S XK ABT0B
Ko a.n0 306.5 Xz ATA.B
Ke 31.08 A00.5 NHe A6 G
K2 32.00 ABMH XHE AN5.0
s 33.00 AR5 Klim 4la.8
Ha e 00 AR5 FKm 376.9
K= A%.08 a@n. %  MNKe 313.0
Ka 35.00 303t S KH= 219.8

= AT.00 085 Kim R0 0

= G800 AB0.5  MHn 336.0
He 3%.00 aNG.% KHa 3R1.0
Ko #it.00 GG KHa 24Y.0
Ke 4} .00 M. B MHm 2750
K= &42.06 A0M. b ¥Hn 31449

= Ad.00 AR5 KH= BU5.H
Ke £ 060 ARG RHs 30403
K= 4500 363 .5 MK 304.0
He 46400 33@.5 XK= I6Z2.0

w4700 ABR.5 KM= 3R
H= 4B.00 ABGLS NHE BYG.0
Ke 49,050 a6 5 KHe 3RG.9
Ko Ln.en S36.5  XH= 20E.0

FHFn
EKEn
ERE=
EHE=
EHE=
EKE=
EHE=
EKFEe
EKE=
FKE=
FKE=
EKEe
FHER

be000
1.0006
L.a0n
lL.0ea
lLeQ0ig
|-e0a
1-ea
1.0n4
1.000
1.m00
1-P00
1,000
1.0M8

ERE==-1.008
EXFr=1.000

EHEe=
ElCEr

£ 000
1000

EHE=~§ . 000
FHE==1.000

EX
EXE=

1.600
1-000

EdFa=1.060

EK k=

1.000

FE=-1.B18

EKE=
FHE=~1.00C0
EKK=-1.000
FKE=-1:000
EKEx=1,000
Kitn~1@A0
o« 1.030

l.0CR

1+HRG

1.p0R

CEN YT
EHFr-1BEA

Fi{F=

-FElEs

10608
1.6800

Table 1fa) ‘Table of valuas for Fig. ¥(a)
¥ E'th sampling instant,

s¥ = input signal at time 1.

¥E = {npui esitmate at time K.

TRE = slgn bit ot tima K.

FKE=~1.000
EKE= 1.030
EKE=~1.208
EME= [.6003
FKE=z- | + B
EKEr=1 1106
EXE= L.G8E
EKE®
EKE==1.0GG

1828 - .

Ka 01.000
lie 1,350
Ke 2.800
Ke 2.600
Ke A.800
Hr 5.000
K= 6.080
Ha 7.p06
M B.GA0
Ke S.000
He 1B.AR
Kz 11.008
H= 12.00
Ka 13,00
Ke 14.03
Kn 15.048
K= 16.00
Ke 17.55
K= 18.08
Ko 19.00
N A G0
Ke B1.00
He 20.06
Ho 23.60
K 24806
He &25.80
K 6.0
Ke £7.08
K= PR.0B
K= R3.2R
He 3600
K= 3f.00
K= 3z.00
K= 33.02
Ke 34.08
Ka 35.08
Ha 3600
Mo 37.00
He 38.00
K= 39.60
He AG. A0
Ks 41.50
Ha 4,00
K= 43.80
He Afra 06
K= 4%.090
K= 46.80
= 4706
K= 45.60
Ha 49.00

]
Table 1 (k5
FKQ}

Hd= 5a08.5 XK=n
SK= 5p8.5 XK=
. 5K= 5H0.5° XHa
S5K= 5.5 KHe
S5K= 500.5 K=
SK= S50R.5 K=
SH= SHR.5 XK=
SHe 500.5 %K=
SK= 588.5 ¥H=
SHe 598.5 ¥H=
K= 58045 Y=
Skk= 58a.5 HH=
SK= 580.5 ¥He=
SKe 508.5 XHr
LHKe 5005 XHe
SK= 500.5 XK
SK= 50835 XK=
SK= 5043.5 XK=
Sl= 586G.5 ¥Hu
SH= 5R60.5 XKo
Exu 50005 A=
5Ha 500G.5 KK
K= 500.5 KKe
SHe SAB.5 XK=
SHe SHRE5 XKm
SHe EBfR.S K e
S5H= ARG KHa
SHo- 3005 XHa
SKe 3AR.S MK
SHr 805 KA
SHe J3AB«5 Hi{=
SHe AdR.5  XH=
SH= JHB.5 HHn
SHe JHA.S ¥Ka
SH= 315 XK=
SH= 36R.B XM=
Sit= 3NR«5 KKn
SH= ANfs 5 HHr
SHe 3005 X#n
SHe= 315 K=
*HBHe GRS HH=
SK{e 3405 KH=
SH= 3.5 XH=
SH= JA08.5 HH=
SK= OfiR. 5 XK=
S5K= AARa 5 K=
SH= J3a0.5 Ril=
SKe 338.5 XH=
S5K= 388.5 F =
SK= 386.5 XH=

Tsbie of veluas for

3.000
2000
5. 0010
2.0
15.00
24.00
37.08
56400
L2 )5 ]
126.9
189.8
28%.0
A24.G
S29.¢
ARUD
4766
515.0
ATh.H
A95.0
509 .0
OG5 6
592.0
499.0 "
504 .9
01 .4
5 6
SUR.G
5066
#%9.0
Q967
HODG
LqU6.0
LTTFD
4610
G
AT
ATHG
*312.4
265G
atz0
2HG 0
3630
3n.0
ING .0
3640
IBE.
.G
3NZ.0
jeleTn g o)
GG1.6

Flo. {5

K=
EKU=
LU=
EKle
Fi =
EK)=
FH L
FXU=
FEitila

CER=

EHe
EXU=
EXtI=

- EXHiE=

EKl=
Elti=
FKU=
EHt)=
FHie=
FHU=

TERIs

L]
EKUr
EKLe
Elill=
| H
EXlim
ER e
FKi=
EK\J=
Fa1]=
FKle

- EKIi=

EXIl=
ERi=
Bl
EKUa
EK)=
EXtia
EXii=
EH U=
FKI}x
EXl=
EXi=
EXli=
E¥ e
EX (s
X U=
ERU=
FH1Ex

1.nA0
1.600
1-n0A
.60
1RGN
1.6000
1.088
1.003
.00
1008
UL
1-000
i-008
“b.00n
T
Lepes
. L.BHe
1.660
1.3%A

-1.0RA°

1+000
~1.0060

1.608

1-pan
“1.¢480

1.6480
~1.039
-1.6404
=1.006
-1«880
~1.0604
~1.008
-1.404
=~ |« ZdN
=1.08a
=1.070
-1 «R80
-1.080

1.008
1000

T

1400
~1.000¢
1.009
=1.080
=5 {i33
1.9038
-~ 10008
1836
-4 B850

aign bit vaed ineide encoder and dacndoer.

LET = pign hit franamiited from encoder o decoder.

FKTe
FKT=
EKT=
FKTs
EWT=
EKTn
EX =
EKT=
LHT=
EXT=
FHT=
EHT=
EHTa

1088
[+0109
1+090
L-ARY
1.2093
1.an3
1+808
1.7
1.0600
1.807
140902
1.002
1.004

EXTa~1+003
FRTa= 1833

EXTa

1,880

FHTa~ {000
ERT=~ 1082
EKT= §.0824
ENT=«|.000
EXT== 088
EHTa=1.00%

EKT=
EKTe

| Ryl
1 Y]

EKTe~1aRRA
EHT= =1 +06A
EKTu~1 (00

. ERKTe<1 800

FRKTa«1.200
ERT=-t+300
EK o=t -060
ERTr=! 060
EHTa~1:0080
ENT=-1s006
ERT=~1 008

_EKTe-1.004

FEHT==1+BRG
EHT=~1 090

EKT=
ElT=
EKTe
EXT=

P03
1208
1036a
t.0ad

EKTe~1.6080
EKTe=1.008
EKT=~1+0060
EKT==1.000
EKTe 1980
EKTS L.008
EKT= F.GA6
EHTe-1+065



